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This paper presents an improved generalized di!erential quadrature (GDQ) method for
the investigation of the e!ects of boundary conditions on the free vibration characteristics of
truncated conical panels. The truncated conical panel is an important geometrical shape in
the "elds of aerospace, marine and structural engineering. However, despite this importance,
few works in free vibration analysis have dealt with this particular geometry. In this work,
the vibration characteristics of clamped and simply supported truncated conical shells are
obtained for various circumferential wave numbers. Further, the e!ects of the vertex and
subtended angles on the frequency parameters are also examined in detail. Due to limited
published results in the open literature, results for a range of cases are compared with those
generated from the commercial "nite element solver McNeal}Schwendler Corporation
Nastran, and excellent agreement is observed.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Truncated conical shell panels have a wide range of engineering applications, particularly in
aerospace, marine and structural engineering. Many structures comprise at least a few
components with this geometrical pro"le, such as turbine blades or aircraft fuselages. In
practice, such components can be subjected to varying levels of dynamic stresses. A reliable
way to predict the behavior of such components is essential for the sound and reliable
design of this class of structural components. In a review by Chang [1], there was no
reference dealing directly with the free vibration of such truncated conical panels. The
proposed reason was the di$culties involved in such an open structure. When dealing with
a completely closed conical shell, the 2-D problem can be reduced using standard Fourier
decomposition. For a conical panel, however, it is not possible to perform such a reduction
operation, and the two-dimensional "eld must be dealt with directly. In contrast, much
work has been done on the analyses of closed truncated conical shells. A few of the notable
works include Saunders et al. [2], Goldberg et al. [3], Kalnins [4], Garnet and Kemper [5],
Siu and Bert [6], Irie et al. [7, 8], Tong [9, 10], Shu [11] and Wang et al. [12].

For the case of conical panels, an early work by Rossetos and Parisse [13] examined their
dynamic responses. Ashwell and Gallagher [14, 15] approached this subject using the "nite
elemental approach. However, additional elements with large degrees of freedom had to be
used to ensure the continuity and equilibrium between the elements in their model.
Approximations for the fundamental frequencies and buckling loads were presented by
Teichmann [16] for conical shell panels under initial stress. Srinivasan and Krishnan [17]
used the simple Donnell's shell theory and an integral equation method to derive the
0022-460X/02/120329#20 $35.00/0 � 2002 Elsevier Science Ltd.
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natural frequencies and vibration mode of clamped isotropic conical panel. However, it was
noted by Cheung et al. [18] that the results presented in the article of Srinivasan and
Krishnan's [17] have yet to converge. Cheung et al. [18] developed and demonstrated the
validity of the spline "nite strip method for the analysis of the vibration characteristics of
various singly curved shell structures such as circular arches, clamped conical shells and
elliptical shells. An approach based on spline approximation was presented by Grigorenko
et al. [19] for the static analysis of thin conical panels. Liew and Lim [20] modelled shallow
conical shell panels using the Rayleigh}Ritz method. This was extended to include "rst
order shear deformation in Lim and Liew [21]. Lim and Kitipornchai [22] have also
analyzed this problem by adopting a natural conical co-ordinate system such that any
approximations in geometry will be eliminated. Bardell et al. [23] used the h}p
"nite-element method together with Love's thin shell equations to investigate the natural
frequencies of conical sandwich panels.

Although the vibration of conical panels can be easily solved using commercial
"nite-element packages, these commercial packages are unable to handle other classes of
dynamic problems such as parametric resonance or even the vibration characteristics of
rotating panels. The present development of the GDQ formulation for solving the vibration
of conical panels establishes the di!erential quadrature framework for solving these more
complicated dynamic problems. A further advantage of the GDQ over "nite element
method (FEM) is the computational e$ciency. In the FEM, the weak forms must "rst be
generated from the governing di!erential equations of motion. Following this, numerical
approximations such as Gaussian integration are then employed to transforms the integral
weak forms to the algebraic form for the elemental sti!ness and masses, before assembling
them to form the corresponding global matrices. In the GDQ method, however, the
governing di!erential equations of motion are directly transformed in one step to obtain the
"nal algebraic forms. The method of di!erential quadrature has been widely used for
a variety of problems, see Gutierrez et al. [24] and the review article by Bert and Malik
[25]. To the authors' knowledge, the generalized di!erential quadrature (GDQ)method has
not been applied to the free vibration of conical shell panels. Further, no attention has been
given in previous frequency studies on this geometry to the e!ects of di!erent boundary
conditions. This paper will demonstrate the feasibility and e!ectiveness of the GDQmethod
for thin isotropic conical shell panels, and in the process, look into the e!ects of vertex and
subtended angles on the natural frequencies. These e!ects will be examined under four
di!erent boundary condition types.

2. GOVERNING EQUATIONS AND DISPLACEMENT FIELD

Consider a homogeneous, isotropic, thin conical shell panel as shown in Figure 1, where
the half vertex angle is denoted by �, the subtended angle by �, the thickness by h and the
slanted length of the shell by ¸. The symbols a and b represent the radii of the smaller and
larger ends of the conical shell respectively. The radius at any one point of the shell can be
calculated by the simple relationship r(x)"a#x sin �. The middle surface between the
thickness of the shell will be taken as the reference surface for our ground-based orthogonal
co-ordinate system (x, �, z). The components of displacement in the meridional, x,
circumferential, �, and normal, z, directions are denoted by u, v and w respectively.

The governing equations of motion in terms of the displacements and force and moment
resultants for the free vibration of a conical shell can be written as follows, see Lam and Li [26]:
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Figure 1. Geometry of the truncated conical panel.

GENERALIZED DIFFERENTIAL QUADRATURE METHOD 331
�N
��

�x
#

1

r(x)

�N�
��

#

cos �
r (x)

�M
��

�x
#

cos �
r�(x)

�M�
��

#2
sin �
r (x)
N

��!�h
��v

�t�
"0, (2)

��M
�

�x�
#

2

r(x)

��M
��

�x��
#

1

r� (x)

��M�
���

#

2 sin �
r(x)

�M
�

�x
!

sin �
r (x)

�M�
�x

!

cos �
r (x)

N�!�h
��w

�t�
"0, (3)

where

�"� (x, �)"
1

h �
���

����

�*(x, �, z) dz, (4)

r(x)"a#x sin �, (5)

where �*(x, �, z) is the density of the conical shell and � (x, �) the average density in the
normal z direction.N�"�N
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� are the reference surface strains and

curvatures. The subscripts &&1'' and &&2'' denote the meridional and circumferential directions.
These strain and curvature components can be given by the following geometric
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deformation relationships of the reference surface for a conical shell as
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Based on the hypothesis of Love's [27] "rst approximation which states that the strain
components, e

�
, e� and e

�� , at any point of a conical shell can be expressed by a linear
function of the normal co-ordinate z in terms of the reference strains and curvatures, each of
these components may be expressed as
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Substituting equations (6) and (7) into the governing equations of motion, equations (1)} (3),
yields
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e governing partial di!erential equations, equations (1)} (3), do not take into account the
undary conditions at any of the edges. Thus, the formulation is general to this stage with
gard to edge boundary conditions. In this present work, simply supported boundary
nditions are assumed at both the straight edges of the conical panel for all present
merical computations, i.e.,

u"0, w"0, N�"0, M�"0 at �"0, �. (20)
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For the curved edges, x"0 and ¸, simply supported boundary conditions are expressed as
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and for clamped boundary conditions
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To satisfy the simply supported boundary condition at the straight edges, the displacement
"eld can be simulated by the following trial functions:

U�"�u(x, �, t) v (x, �, t) w (x, �, t)�

"�; (x)sin �
n
�
� � e��� <(x)cos �

n
�
� � e��� =(x)sin �

n
�
� � e���� . (23)

We substitute the trial functions, equation (23), into the displacement governing equations,
equation (10), and the terms with � and t will be eliminated and the governing equation
would be simpli"ed as follows:
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and in matrix form

JU*"0, (25)

where U*"�;(x), <(x),= (x)�� is an unknown spatial function vector of the mode shape
in the meridional x direction. The resulting partial di!erential operators J"[J
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Expressed in such a form as the above, the generalized di!erential quadrature method can
be easily applied to terms of the same order of derivative in the governing equations of
motion.

3. GENERALIZED DIFFERENTIAL QUADRATURE (GDQ) METHOD

The generalized di!erential quadrature or GDQ method states that the derivatives of
a su$ciently smooth function with respect to a co-ordinate direction at a discrete grid point
can be approximated by a weighted linear sum of functional values of all the discrete mesh
points in that co-ordinate direction. It is based on the analyses of a higher order polynomial
approximation in linear vector space to arrive at the weighting coe$cient required by the
method. The mathematical expression of this basic theorem is expressed as
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The di!erence between the GDQ method and the traditional DQ method is in the way
the base polynomials are chosen. As the GDQ method utilizes the Lagrange interpolation
polynomial as the base polynomial, it is superior to the DQ method because it allows for
greater #exibility in the selection of the location of the grid points. As a result, for the GDQ
method, the base polynomial is presented by the Lagrange interpolation polynomial where
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weighting coe$cient for "rst order derivatives, m"1, in equation (55), can be obtained as
follows:
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and for the higher order derivatives, m*2,
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The reason for this is that any one set of base polynomials can be distinctively mapped by
another base polynomial, as stated by the theory of linear vector space. Thus, the unknown
function f (x, t) in equation (55) can be approximated by x�. Then, by assigning a value of
0 to the arbitrary power variable k, equation (55) becomes ��
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condition, the values ofC�
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can be easily derived from the other values ofC�
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from equations

(59) and (60). One of the advantages of the GDQ method is that it does not impose any
constraints on the co-ordinate distribution of the grid points. In this study, we choose to use
the cosine grid point distribution in our computations:
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Substituting equation (55) into the set of reduced governing equations, equation (24), we
transform the governing equations in the di!erential form into a set of linear discrete
algebraic equations
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For a given boundary condition at the curved edges, imposing equation (63) at every
discrete point (i"1, 2,2,N) and then rearranging the resulting equation in terms of the
natural frequency, �, we obtained the governing eigenvalue equation in matrix form

[R
�*��*

!��I
�*��*

]d
�*��

"0, (66)

where I is a unit matrix, R is anN*�N* (N*"3�N!8) characteristic matrix and d is the
N* order column vector
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Using equation (66) for the present conical shell panel, we can compute the natural
frequencies for any given combination of geometrical parameters and the material
properties.

4. RESULTS AND DISCUSSION

4.1. CONVERGENCE AND COMPARISON STUDIES

In the present study, four boundary condition types are considered, namely:
clamped}clamped (C



}C

�
), simply supported}clamped (S



}C

�
), clamped}simply supported

(C


}S

�
), and simply supported}simply supported (S



}S

�
). The "rst alphabet in the

acronyms denotes the boundary condition, while the subscript denotes the side in which the
boundary condition is applicable. The subscript &&S'' denotes the edge with the smaller
radius, while the subscript &&¸'' denotes the edge with the larger radius. To facilitate
comparison of data, all frequency parameter results presented in this section are in the
dimensionless form, f"�b(�h/A

��
)���.

To ensure convergence of the present results, a detailed study was conducted in which the
convergence characteristics were observed. Also, comparison studies against results
generated by the commercial "nite element solver MSC/Nastran using eight-noded shell
elements were conducted. For these FEM results, well-converged results were obtained
using a 200�40 grid size or 8000 elements. The tabulated results of these convergence and
comparison studies are presented in Tables 1}3 for a range of parametric cases. For all four
cases of boundary conditions considered here, as the number of grid points is increased,
monotonic convergence is observed. It is found that the use of 15 grid points produced
su$ciently converged results with generally less than 1% di!erence when compared with
results using 13 grid points. All subsequent results in the following parametric studies are
thus obtained using 15 grid points. It is also observed that the present GDQ results agree
very well with the FEM results for all four boundary condition cases with less than 4%
di!erence between the two sets of results. To provide a feel for some of the frequency results,
the fundamental mode (m, n)"(1, 2) of a clamped C



}C

�
panel of shell parameters

a"3 cm, ¸"20a, h"0)015a, �"203 and �"603, with material properties
E"7)0�10�	Pa, �"2)7�10�kg/m� and "0)3 has a frequency of 2)0288kHz. The
fundamental frequency for a corresponding simply supported S



}S

�
panel is 1)4478kHz.

4.2. PARAMETRIC STUDIES

The in#uences of the length ratio, ¸/a, on the frequency parameters are presented in
Figures 2}5 with each "gure individually representing each of the four boundary conditions
considered. It is evident that all the frequency modes decrease as the ¸/a ratio is increased.
This is reasonable and intuitively correct as a length increase will generally result in
decreased sti!ness. Also, as the length ratio is increased, the frequencies of the "rst "ve
modes tend to converge. For the panel con"guration considered, the fundamental mode for
this range of results corresponds to mode (m, n)"(1, 2) for all four boundary conditions.
No curve veering, see Kuttler and Sigillito [28] and Perkins and Mote [29], is observed.
However, eigenvalue crossings are observed for the C



}C

�
and S



}C

�
cases where

mode (m, n)"(1, 1) starts o! as the third mode and, as the length ratio is increased, crosses
the pro"les of modes (m, n)"(1, 4) and (1, 5) to become the fourth and subsequently the
"fth mode. Further, it is observed that the boundary conditions considered do not
a!ect the qualitative nature of the results presented in Figures 2}5. This should be



TABLE 1

Convergence characteristics and comparison of frequency parameter, f"�b��h/A
��
, with results generated from MSC/NAS¹RAN for

a conical panel of parameters �"203, �"603, h"0)015a, ¸"20a, v"0)3 and axial wave number m"1

Circumferential wave number, n
Boundary Grid
conditions points 2 3 4 5 6 7

7 0)0922(!3)34%) 0)1174(!7)40%) 0)1512(!4)08%) 0)2126(!9)99%) 0)2983(!18)12%) 0)4027(!24)83%)
9 0)0903(!1)19%) 0)1115(!2)01%) 0)1493(!2)78%) 0)2003(!3)60%) 0)2600(!2)95%) 0)3380(!4)79%)

C


}C

�
11 0)0898(!0)61%) 0)1103(!0)92%) 0)1473(!1)40%) 0)1966(!1)72%) 0)2594(!2)72%) 0)3316(!2)79%)
13 0)0895(!0)33%) 0)1099(!0)50%) 0)1464(!0)76%) 0)1956(!1)17%) 0)2564(!1)55%) 0)3294(!2)12%)
15 0)0894(!0)17%) 0)1096(!0)27%) 0)1460(!0)46%) 0)1948(!0)75%) 0)2554(!1)14%) 0)3277(!1)59%)

NASTRAN 0)0892 0)1093 0)1453 0)1933 0)2525 0)3226

7 0)0922(!3)29%) 0)1174(!7)44%) 0)1510(!3)92%) 0)2125(!9)92%) 0)2982(!18)08%) 0)4026(!24)81%)
9 0)0902(!1)14%) 0)1115(!2)01%) 0)1493(!2)77%) 0)2003(!3)59%) 0)2599(!2)94%) 0)3380(!4)78%)

S


}C

�
11 0)0898(!0)61%) 0)1103(!0)92%) 0)1473(!1)40%) 0)1966(!1)72%) 0)2594(!2)72%) 0)3315(!2)79%)
13 0)0895(!0)33%) 0)1099(!0)50%) 0)1464(!0)76%) 0)1956(!1)17%) 0)2564(!1)55%) 0)3294(!2)12%)
15 0)0894(!0)27%) 0)1096(!0)27%) 0)1460(!0)46%) 0)1948(!0)75%) 0)2554(!1)14%) 0)3277(!1)59%)

NASTRAN 0)0892 0)1093 0)1453 0)1933 0)2525 0)3226

7 0)0648(1)11%) 0)0840(8)40%) 0)1340(!2)95%) 0)2059(!14)56%) 0)2950(!22)89%) 0)4006(!28)85%)
9 0)0623(4)90%) 0)0916(0)08%) 0)1269(2)51%) 0)1768(1)64%) 0)2451(!2)09%) 0)3288(!5)75%)

C


}S

�
11 0)0632(3)53%) 0)0903(1)44%) 0)1303(!0)16%) 0)1793(0)21%) 0)2388(0)52%) 0)3119(!0)30%)
13 0)0636(2)90%) 0)0908(0)98%) 0)1297(0)34%) 0)1805(!0)43%) 0)2417(!0)69%) 0)3132(!0)73%)
15 0)0638(2)65%) 0)0909(0)83%) 0)1299(0)16%) 0)1801(!0)24%) 0)2419(!0)76%) 0)3147(!1)22%)

NASTRAN 0)0655 0)0917 0)1301 0)1797 0)2401 0)3109

7 0)0642(1)99%) 0)0842(8)14%) 0)1341(!3)03%) 0)2059(!14)58%) 0)2950(!22)89%) 0)4006(!28)85%)
9 0)0622(5)06%) 0)0916(0)11%) 0)1269(2)51%) 0)1768(1)61%) 0)2451(!2)10%) 0)3289(!5)76%)

S


}S

�
11 0)0632(3)55%) 0)0903(1)44%) 0)1303(!0)16%) 0)1793(0)22%) 0)2389(0)51%) 0)3119(!0)30%)
13 0)0636(2)91%) 0)0908(0)97%) 0)1297(0)34%) 0)1805(!0)43%) 0)2417(!0)69%) 0)3132(!0)73%)
15 0)0638(2)65%) 0)0909(0)83%) 0)1299(0)17%) 0)1801(!0)24%) 0)2419(!0)76%) 0)3147(!1)22%)

NASTRAN 0)0655 0)0917 0)1301 0)1797 0)2401 0)3109

Note: Numbers in parentheses denote discrepancies against FEM results.
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TABLE 2

Convergence characteristics and comparison of frequency parameter, f"�b��h/A
��
, with

results generated from MSC/NAS¹RAN for a conical panel of parameters �"603,
h"0)02a, ¸"25a, v"0)3, and mode (m, n)"(1, 2)

Vertex angle, �
Boundary Grid
conditions points 103 203 303 403

7 0)0908(!7)26%) 0)0963(!3)12%) 0)1138(!3)24%) 0)1252(2)94%)
9 0)0862(!1)78%) 0)0947(!1)40%) 0)1115(!1)17%) 0)1253(2)87%)

C


}C

�
11 0)0855(!0)91%) 0)0941(!0)71%) 0)1108(!0)57%) 0)1245(3)50%)
13 0)0852(!0)56%) 0)0938(!0)42%) 0)1105(!0)30%) 0)1242(3)74%)
15 0)0850(!0)36%) 0)0937(!0)25%) 0)1104(!0)15%) 0)1240(3)87%)

NASTRAN 0)0847 0)0934 0)1102 0)1290

Note: Numbers in parentheses denote discrepancies against FEM results.

TABLE 3

Convergence characteristics and comparison of frequency parameter, f"�b��h/A
��
, with

results generated from MSC/NAS¹RAN for a conical panel of parameters �"303,
h"0)02a, ¸"20a, v"0)3, and mode (m, n)"(1, 4)

Subtended angle, �
Boundary Grid
conditions points 153 303 453 603

7 2)0326(!43)79%) 0)5151(!24)91%) 0)2435(!8)11%) 0)1708(!5)00%)
9 1)6315(!15)41%) 0)4321(!4)80%) 0)2345(!4)09%) 0)1664(!2)28%)

C


}C

�
11 1)5006(!6)15%) 0)4244(!2)93%) 0)2299(!2)05%) 0)1647(!1)26%)
13 1)4645(!3)60%) 0)4215(!2)22%) 0)2283(!1)33%) 0)1639(!0)72%)
15 1)4619(!3)42%) 0)4191(!1)65%) 0)2273(!0)91%) 0)1634(!0)41%)

NASTRAN 1)4136 0)4123 0)2253 0)1627

Note: Numbers in parentheses denote discrepancies against FEM results.
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expected as these results, in their corresponding sets, have correspondingly similar mode
shape forms.

In Figures 6}9, the in#uences of the vertex angle, �, on the frequency parameters are
examined, with again each "gure individually representing each of the four boundary
conditions considered. With the general exception of mode (m, n)"(1, 1), the frequencies
associated with all other modes decrease with increased vertex angles. For mode
(m, n)"(1, 1), the frequencies "rst increase gradually until � is in the range of 35}403 before
decreasing to join the other frequency pro"les in a convergent manner as � is increased
further. Again, no eigenvalue veering is observed here. Crossings are, however, observed
with mode (m, n)"(1, 1) being especially obvious where it starts as the fundamental mode
but with subsequent crossings invariably become the highest of the "ve modes being
plotted. Further, there are some &&minor'' crossings in the C



}C

�
and S



}C

�
cases involving

mode (m, n)"(1, 2) when the frequencies begin to converge as � is increased. In Figures 6}9,
we also observe that the mode shape of the fundamental frequency varies as � increases.
Taking Figure 7 as an example, as � is gradually increased, the fundamental frequency is



Figure 2. Frequency parameter, f"�b��h/A
��

, against length ratio, ¸/a, for a conical panel of parameters
�"303, �"603, h"0)02a, v"0)3 and m"1 (C
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):2�** , n"1;2�** , n"2;*�**, n"3;*�** , n"4;

, n"5.

Figure 3. Frequency parameter, f"�b��h/A
��

, against length ratio, ¸/a, for a conical panel of parameters
�"303, �"603, h"0)02a, v"0)3 and m"1 (S
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�
):2�** , n"1;2�** , n"2;*�** , n"3;*�** , n"4;

, n"5.
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"rst associated with mode (m, n)"(1, 1), followed by mode (m, n)"(1, 2) and "nally with
mode (m, n)"(1, 3). With the exception when � is small, the fundamental frequency
generally decreases with increased �, regardless of which mode shape it is associated with.



Figure 4. Frequency parameter, f"�b��h/A
��

, against length ratio, ¸/a, for a conical panel of parameters
�"303, �"603, h"0)02a, v"0)3 and m"1 (C
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�
):2�** , n"1;2�** , n"2;*�** , n"3;*�** , n"4;

, n"5.

Figure 5. Frequency parameter, f"�b��h/A
��

, against length ratio, ¸/a, for a conical panel of parameters
�"303, �"603, h"0)02a, v"0)3 and m"1 (S
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�
):2�** , n"1;2�** , n"2;*�** , n"3;*�** , n"4;

, n"5.
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Figure 6. Frequency parameter, f"�b��h/A
��

, against vertex angle, �, for a conical panel of parameters
¸"15a, �"603, h"0)01a, v"0)3 andm"1 (C
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�
):2�** , n"1;2�** , n"2;*�** , n"3;*�** , n"4;

, n"5.

Figure 7. Frequency parameter, f"�b��h/A
��

, against vertex angle, �, for a conical panel of parameters
¸"15a, �"603, h"0)01a, v"0)3 and m"1 (S
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�
):2�** , n"1;2�** , n"2;*�** , n"3;*�** , n"4;

, n"5.

GENERALIZED DIFFERENTIAL QUADRATURE METHOD 343



Figure 8. Frequency parameter, f"�b��h/A
��

, against vertex angle, �, for a conical panel of parameters
¸"15a, �"603, h"0)01a, v"0)3 and m"1 (C
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�
):2�** , n"1;2�** , n"2;*�** , n"3;*�** , n"4;

, n"5.

Figure 9. Frequency parameter, f"�b��h/A
��

, against vertex angle, �, for a conical panel of parameters
¸"15a, �"603, h"0)01a, v"0)3 and m"1 (S
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�
):2�** , n"1;2�** , n"2;*�** , n"3;*�** , n"4;

, n"5.
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Figures 10}13 examine the in#uences of the subtended angle, �, on the frequency
parameters corresponding to the four boundary conditions considered. It is observed that
of the "ve modes presented here, the frequencies associated with mode (m, n)"(1, 1)



Figure 10. Frequency parameter, f"�b��h/A
��

, against subtended angle, �, for a conical panel of parameters
¸"15a, �"303, h"0)02a, v"0)3 and m"1 (C



}C

�
):2�** , n"1;2�** , n"2;*�** , n"3;*�** , n"4;

, n"5.

Figure 11. Frequency parameter, f"�b��h/A
��

, against subtended angle, �, for a conical panel of parameters
¸"15a, �"303, h"0)02a, v"0)3 and m"1 (S
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):2�** , n"1;2�** , n"2;*�** , n"3;*�** , n"4;

, n"5.
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increases with increased �, and the frequencies associated with mode (m, n)"(1, 2) "rst
decrease but there comes a turning point at which the frequencies begin to increase
inde"nitely. Eigenvalue crossings associated with the frequencies of these two modes



Figure 12. Frequency parameter, f"�b��h/A
��

, against subtended angle, �, for a conical panel of parameters
¸"15a, �"303, h"0)02a, v"0)3 and m"1 (C
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Figure 13. Frequency parameter, f"�b��h/A
��

, against subtended angle, �, for a conical panel of parameters
¸"15a, �"303, h"0)02a, v"0)3 and m"1 (S
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increasing with � are observed throughout. The other three modes seem to converge as � is
increased. Here again, no eigenvalue veering is observed. As in Figures 6}9, we observe in
Figures 10}13 that the mode shape of the fundamental frequency varies as � increases. It is
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observed in these plots that as � is gradually increased, the fundamental frequency is "rst
associated with mode (m, n)"(1, 1), followed by mode (m, n)"(1, 2) and "nally with mode
(m, n)"(1, 3). If we disregard the associated mode shapes, the fundamental frequency
generally varies little with �.

Also, as in Figures 2}5, the e!ects of the boundary conditions considered, for Figures 6}9
and for Figures 10}13, also do not result in any qualitative di!erences. Again, this is
expected as these results, in their corresponding sets, have correspondingly similar mode
shape forms.

5. CONCLUSIONS

An improved generalized di!erential quadrature (GDQ) method has been presented for
the free vibration analysis of truncated conical panels. Detailed convergence and
comparison studies conducted demonstrate the accuracy and stability of the proposed
methodology for this geometry. Results were presented for four boundary condition types
and parametric studies into the e!ects of the vertex and subtended angles on the frequency
parameters were also examined in detail. No curve veerings associated with the variation of
the natural frequencies with the physical shell parameters were observed.
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